Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 337
Filtrar
1.
Can J Physiol Pharmacol ; 101(10): 521-528, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37311256

RESUMEN

Vagal afferents convey signals of mechanical stimulation in the gut to the brain, which is essential for the regulation of food intake. However, ion channels sensing mechanical stimuli are not fully understood. This study aimed to examine the ionic currents activated by mechanical stimulation and a possible neuro-modulatory role of nitric oxide on vagal afferents. Nodose neuronal currents and potentials, and intestinal afferent firing by mechanical stimulation were measured by whole-cell patch clamp, and in vitro afferent recording, respectively. Osmotically activated cation and two-pore domain K+ currents were identified in nodose neurons. The membrane potential displayed a biphasic change under hypotonic stimulation. Cation channel-mediated depolarization was followed by a hyperpolarization mediated by K+ channels. The latter was inhibited by l-methionine (TREK1 channel inhibitor) and l-NNA (nitric oxide synthase inhibitor). Correspondingly, mechanical stimulation activated opposing cation and TREK1 currents. NOS inhibition decreased TREK1 currents and potentiated jejunal afferent nerve firing induced by mechanical stimuli. This study suggested a novel activation mechanism of ion channels underlying adaptation under mechanical distension in vagal afferent neurons. The guts' ability to perceive mechanical stimuli is vital in determining how it responds to food intake. The mechanosensation through ion channels could initiate and control gut function.


Asunto(s)
Óxido Nítrico , Ganglio Nudoso , Ganglio Nudoso/fisiología , Nervio Vago , Neuronas Aferentes/fisiología , Neuronas
2.
J Physiol ; 601(6): 1139-1150, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36750759

RESUMEN

The influence of NaV 1.9 on inflammatory mediator-induced activation of airway vagal nodose C-fibres was evaluated by comparing responses in wild-type versus NaV 1.9-/- mice. A single-cell RT-PCR analysis indicated that virtually all nodose C-fibre neurons expressed NaV 1.9 (SCN11A) mRNA. Using extracellular electrophysiological recordings in an isolated vagally innervated mouse trachea-lung preparation, it was noted that mediators acting via G protein-coupled receptors (PAR2), or ionotropic receptors (P2×3) were 70-85% less effective in evoking action potential discharge in the absence of NaV 1.9. However, there was no difference in action potential discharge between wild-type and NaV 1.9-/- when the stimulus was a rapid punctate mechanical stimulus. An analysis of the passive and active properties of isolated nodose neurons revealed no difference between neurons from wild-type and NaV 1.9-/- mice, with the exception of a modest difference in the duration of the afterhyperpolarization. There was also no difference in the amount of current required to evoke action potentials (rheobase) or the action potential voltage threshold. The inward current evoked by the chemical mediator by a P2×3 agonist was the same in wild-type versus NaV 1.9-/- neurons. However, the current was sufficient to evoke action potential only in the wild-type neurons. The data support the speculation that NaV 1.9 could be an attractive therapeutic target for inflammatory airway disease by selectively inhibiting inflammatory mediator-associated vagal C-fibre activation. KEY POINTS: Inflammatory mediators were much less effective in activating the terminals of vagal airway C-fibres in mice lacking NaV 1.9. The active and passive properties of nodose neurons were the same between wild-type neurons and NaV 1.9-/- neurons. Nerves lacking NaV 1.9 responded, normally, with action potential discharge to rapid punctate mechanical stimulation of the terminals or the rapid stimulation of the cell bodies with inward current injections. NaV 1.9 channels could be an attractive target to selectively inhibit vagal nociceptive C-fibre activation evoked by inflammatory mediators without blocking the nerves' responses to the potentially hazardous stimuli associated with aspiration.


Asunto(s)
Pulmón , Nervio Vago , Animales , Ratones , Nervio Vago/fisiología , Pulmón/fisiología , Neuronas , Potenciales de Acción/fisiología , Tráquea/inervación , Ganglio Nudoso/fisiología , Canal de Sodio Activado por Voltaje NAV1.9
3.
Cell Mol Neurobiol ; 43(6): 2801-2813, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36680690

RESUMEN

Vagus nerve innervates several organs including the heart, stomach, and pancreas among others. Somas of sensory neurons that project through the vagal nerve are located in the nodose ganglion. The presence of purinergic receptors has been reported in neurons and satellite glial cells in several sensory ganglia. In the nodose ganglion, calcium depletion-induced increases in neuron activity can be partly reversed by P2X7 blockers applied directly into the ganglion. The later suggest a possible role of P2X7 receptors in the modulation of neuronal activity within this sensory ganglion. We aimed to characterize the response to P2X7 activation in nodose ganglion neurons under physiological conditions. Using an ex vivo preparation for electrophysiological recordings of the neural discharges of nodose ganglion neurons, we found that treatments with ATP induce transient neuronal activity increases. Also, we found a concentration-dependent increase in neural activity in response to Bz-ATP (ED50 = 0.62 mM, a selective P2X7 receptor agonist), with a clear desensitization pattern when applied every ~ 30 s. Electrophysiological recordings from isolated nodose ganglion neurons reveal no differences in the responses to Bz-ATP and ATP. Finally, we showed that the P2X7 receptor was expressed in the rat nodose ganglion, both in neurons and satellite glial cells. Additionally, a P2X7 receptor negative allosteric modulator decreased the duration of Bz-ATP-induced maximal responses without affecting their amplitude. Our results show the presence of functional P2X7 receptors under physiological conditions within the nodose ganglion of the rat, and suggest that ATP modulation of nodose ganglion activity may be in part mediated by the activation of P2X7 receptors.


Asunto(s)
Ganglio Nudoso , Receptores Purinérgicos P2X7 , Ratas , Animales , Ganglio Nudoso/fisiología , Nervio Vago/fisiología , Adenosina Trifosfato/farmacología , Células Receptoras Sensoriales
4.
Am J Physiol Lung Cell Mol Physiol ; 322(1): L50-L63, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34755535

RESUMEN

Known as the gas exchange organ, the lung is also critical for responding to the aerosol environment in part through interaction with the nervous system. The diversity and specificity of lung innervating neurons remain poorly understood. Here, we interrogated the cell body location and molecular signature and projection pattern of lung innervating sensory neurons. Retrograde tracing from the lung coupled with whole tissue clearing highlighted neurons primarily in the vagal ganglia. Centrally, they project specifically to the nucleus of the solitary tract in the brainstem. Peripherally, they enter the lung alongside branching airways. Labeling of nociceptor Trpv1+ versus peptidergic Tac1+ vagal neurons showed shared and distinct terminal morphology and targeting to airway smooth muscles, vasculature including lymphatics, and alveoli. Notably, a small population of vagal neurons that are Calb1+ preferentially innervate pulmonary neuroendocrine cells, a demonstrated airway sensor population. This atlas of lung innervating neurons serves as a foundation for understanding their function in lung.


Asunto(s)
Pulmón/inervación , Células Receptoras Sensoriales/fisiología , Células Epiteliales Alveolares/metabolismo , Animales , Tronco Encefálico/fisiología , Calbindinas/metabolismo , Perfilación de la Expresión Génica , Integrasas/metabolismo , Pulmón/irrigación sanguínea , Ratones , Modelos Biológicos , Músculo Liso/fisiología , Células Neuroendocrinas/metabolismo , Ganglio Nudoso/fisiología , Tráquea/inervación , Nervio Vago/fisiología
5.
Sci Rep ; 11(1): 12925, 2021 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-34155231

RESUMEN

Dysfunction and diseases of the gastrointestinal (GI) tract are a major driver of medical care. The vagus nerve innervates and controls multiple organs of the GI tract and vagus nerve stimulation (VNS) could provide a means for affecting GI function and treating disease. However, the vagus nerve also innervates many other organs throughout the body, and off-target effects of VNS could cause major side effects such as changes in blood pressure. In this study, we aimed to achieve selective stimulation of populations of vagal afferents using a multi-contact cuff electrode wrapped around the abdominal trunks of the vagus nerve. Four-contact nerve cuff electrodes were implanted around the dorsal (N = 3) or ventral (N = 3) abdominal vagus nerve in six ferrets, and the response to stimulation was measured via a 32-channel microelectrode array (MEA) inserted into the left or right nodose ganglion. Selectivity was characterized by the ability to evoke responses in MEA channels through one bipolar pair of cuff contacts but not through the other bipolar pair. We demonstrated that it was possible to selectively activate subpopulations of vagal neurons using abdominal VNS. Additionally, we quantified the conduction velocity of evoked responses to determine what types of nerve fibers (i.e., Aδ vs. C) responded to stimulation. We also quantified the spatial organization of evoked responses in the nodose MEA to determine if there is somatotopic organization of the neurons in that ganglion. Finally, we demonstrated in a separate set of three ferrets that stimulation of the abdominal vagus via a four-contact cuff could selectively alter gastric myoelectric activity, suggesting that abdominal VNS can potentially be used to control GI function.


Asunto(s)
Estimulación del Nervio Vago , Nervio Vago/fisiología , Animales , Electrodos , Potenciales Evocados , Hurones , Tracto Gastrointestinal/inervación , Neuronas/fisiología , Ganglio Nudoso/fisiología , Estimulación del Nervio Vago/métodos
6.
Cell Metab ; 33(7): 1466-1482.e7, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34043943

RESUMEN

Sensory neurons relay gut-derived signals to the brain, yet the molecular and functional organization of distinct populations remains unclear. Here, we employed intersectional genetic manipulations to probe the feeding and glucoregulatory function of distinct sensory neurons. We reconstruct the gut innervation patterns of numerous molecularly defined vagal and spinal afferents and identify their downstream brain targets. Bidirectional chemogenetic manipulations, coupled with behavioral and circuit mapping analysis, demonstrated that gut-innervating, glucagon-like peptide 1 receptor (GLP1R)-expressing vagal afferents relay anorexigenic signals to parabrachial nucleus neurons that control meal termination. Moreover, GLP1R vagal afferent activation improves glucose tolerance, and their inhibition elevates blood glucose levels independent of food intake. In contrast, gut-innervating, GPR65-expressing vagal afferent stimulation increases hepatic glucose production and activates parabrachial neurons that control normoglycemia, but they are dispensable for feeding regulation. Thus, distinct gut-innervating sensory neurons differentially control feeding and glucoregulatory neurocircuits and may provide specific targets for metabolic control.


Asunto(s)
Regulación del Apetito , Eje Cerebro-Intestino/fisiología , Glucosa/metabolismo , Células Receptoras Sensoriales/fisiología , Vías Aferentes/metabolismo , Animales , Apetito/fisiología , Regulación del Apetito/genética , Comunicación Celular/genética , Metabolismo Energético/genética , Metabolismo Energético/fisiología , Receptor del Péptido 1 Similar al Glucagón/genética , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Masculino , Ratones Transgénicos , Ganglio Nudoso/metabolismo , Ganglio Nudoso/fisiología , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Nervio Vago/metabolismo , Nervio Vago/fisiología , Proteína Wnt1/genética , Proteína Wnt1/metabolismo
7.
J Neurophysiol ; 125(5): 2000-2012, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33881911

RESUMEN

This study demonstrates that the action potential discharge in vagal afferent A-fiber neurons is about 20 times more sensitive to the rate of membrane depolarization compared to C-fiber neurons. The sensitivity of action potential generation to the depolarization rate in vagal sensory neurons is independent of the intensity of current stimuli but nearly abrogated by inhibiting the D-type potassium channel. These findings help better understand the mechanisms that control the activation of vagal afferent nerves.


Asunto(s)
Potenciales de Acción/fisiología , Fibras Nerviosas Mielínicas/fisiología , Fibras Nerviosas Amielínicas/fisiología , Neuronas Aferentes/fisiología , Ganglio Nudoso/fisiología , Canales de Potasio de la Superfamilia Shaker/fisiología , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Técnicas de Placa-Clamp , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio de la Superfamilia Shaker/antagonistas & inhibidores
8.
Gastroenterology ; 160(3): 875-888.e11, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33121946

RESUMEN

BACKGROUND AND AIMS: Destroying visceral sensory nerves impacts pancreatic islet function, glucose metabolism, and diabetes onset, but how islet endocrine cells interact with sensory neurons has not been studied. METHODS: We characterized the anatomical pattern of pancreatic sensory innervation by combining viral tracing, immunohistochemistry, and reporter mouse models. To assess the functional interactions of ß-cells with vagal sensory neurons, we recorded Ca2+ responses in individual nodose neurons in vivo while selectively stimulating ß-cells with chemogenetic and pharmacologic approaches. RESULTS: We found that pancreatic islets are innervated by vagal sensory axons expressing Phox2b, substance P, calcitonin-gene related peptide, and the serotonin receptor 5-HT3R. Centrally, vagal neurons projecting to the pancreas terminate in the commissural nucleus of the solitary tract. Nodose neurons responded in vivo to chemogenetic stimulation of ß-cells and to pancreas infusion with serotonin, but were not sensitive to insulin. Responses to chemogenetic and pharmacologic stimulation of ß-cells were blocked by a 5-HT3R antagonist and were enhanced by increasing serotonin levels in ß-cells. We further confirmed directly in living pancreas slices that sensory terminals in the islet were sensitive to serotonin. CONCLUSIONS: Our study establishes that pancreatic ß-cells communicate with vagal sensory neurons, likely using serotonin signaling as a transduction mechanism. Serotonin is coreleased with insulin and may therefore convey information about the secretory state of ß-cells via vagal afferent nerves.


Asunto(s)
Vías Aferentes/fisiología , Comunicación Celular , Células Secretoras de Insulina/fisiología , Ganglio Nudoso/fisiología , Células Receptoras Sensoriales/fisiología , Animales , Femenino , Insulina/metabolismo , Microscopía Intravital , Masculino , Ratones , Ratones Transgénicos , Microscopía Confocal , Modelos Animales , Ganglio Nudoso/citología , Serotonina/metabolismo , Transducción de Señal/fisiología
9.
Pharmacol Res ; 164: 105391, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33352230

RESUMEN

Baroreflex plays a crucial role in regulation of arterial blood pressure (BP). Recently, Piezo1 and Piezo2, the mechanically-activated (MA) ion channels, have been identified as baroreceptors. However, the underlying molecular mechanism for regulating these baroreceptors in hypertension remains unknown. In this study, we used spontaneously hypertensive rats (SHR) and NG-Nitro-l-Arginine (L-NNA)- and Angiotensin II (Ang II)-induced hypertensive model rats to determine the role and mechanism of Piezo1 and Piezo2 in hypertension. We found that Piezo2 was dominantly expressed in baroreceptor nodose ganglia (NG) neurons and aortic nerve endings in Wistar-Kyoto (WKY) rats. The expression of Piezo2 not Piezo1 was significantly downregulated in these regions in SHR and hypertensive model rats. Electrophysiological results showed that the rapidly adapting mechanically-activated (RA-MA) currents and the responsive neuron numbers were significantly reduced in baroreceptor NG neurons in SHR. In WKY rats, the arterial BP was elevated by knocking down the expression of Piezo2 or inhibiting MA channel activity by GsMTx4 in NG. Knockdown of Piezo2 in NG also attenuated the baroreflex and increased serum norepinephrine (NE) concentration in WKY rats. Co-immunoprecipitation experiment suggested that Piezo2 interacted with Neural precursor cell-expressed developmentally downregulated gene 4 type 2 (Nedd4-2, also known as Nedd4L); Electrophysiological results showed that Nedd4-2 inhibited Piezo2 MA currents in co-expressed HEK293T cells. Additionally, Nedd4-2 was upregulated in NG baroreceptor neurons in SHR. Collectively, our results demonstrate that Piezo2 not Piezo1 may act as baroreceptor to regulate arterial BP in rats. Nedd4-2 induced downregulation of Piezo2 in baroreceptor NG neurons leads to hypertension in rats. Our findings provide a novel insight into the molecular mechanism for the regulation of baroreceptor Piezo2 and its critical role in the pathogenesis of hypertension.


Asunto(s)
Hipertensión/fisiopatología , Canales Iónicos/fisiología , Ubiquitina-Proteína Ligasas Nedd4/fisiología , Neuronas/fisiología , Ganglio Nudoso/fisiología , Presorreceptores/fisiología , Animales , Aorta Torácica/inervación , Barorreflejo , Células Cultivadas , Humanos , Masculino , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Transducción de Señal
10.
Brain Res ; 1751: 147201, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33171152

RESUMEN

The identity of sensory neurons innervating the heart tissue and the extent of information reported to the brain via these neurons are poorly understood. In order to evaluate the multidimensional distribution and abundance of the cardiac spinal and vagal afferents, we assessed the retrograde labeling efficiency of various tracers, and mapped the cardiac afferents qualitatively and quantitatively at the bilateral nodose ganglia (NGs) and dorsal root ganglia (DRGs). From the five different retrograde tracers evaluated, Di-8-ANEPPQ yielded reproducibly the highest labeling efficiency of cardiac afferents. We demonstrated specific cardiac afferents at NGs and C4 to T11 DRG segments. Next, the 2D reconstruction of the tissue sections and 3D imaging of the whole NGs and DRGs revealed homogeneous and bilateral distribution of cardiac afferents. The quantitative analyses of the labeled cardiac afferents demonstrated approximately 5-6% of the soma in NGs that were equally distributed bilaterally. The neuronal character of Di-8-ANEPPQ labeled cells were validated by coimmunostaning with pan-neuronal marker Tuj-1. In addition, the cell diameters of labeled cardiac sensory neurons were found smaller than 20 µm, implying the nociceptor phenotype confirmed by co-labeling with TRPV1 and Di-8-ANEPPQ. Importantly, co-labeling with two distinct tracers Di-8-ANEPPQ and WGA-647 demonstrated exclusively the same cardiac afferents in DRGs and NGs, validating our findings. Collectively, our findings revealed the cardiac afferents in NGs bilaterally and DRGs with the highest labeling efficiency reported, spatial distribution and quantitation at both 2D and 3D levels, furthering our understanding of this novel neuron population.


Asunto(s)
Corazón/inervación , Células Receptoras Sensoriales/citología , Coloración y Etiquetado/métodos , Animales , Femenino , Colorantes Fluorescentes/análisis , Colorantes Fluorescentes/química , Ganglios/fisiología , Ganglios Espinales/fisiología , Corazón/fisiología , Masculino , Ratones , Ratones Endogámicos BALB C , Neuronas Aferentes/fisiología , Nociceptores/fisiología , Ganglio Nudoso/fisiología , Nervio Vago
11.
Sci Rep ; 10(1): 18415, 2020 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-33116243

RESUMEN

The gastrointestinal tract transmits feeding-regulatory signals to the brain via neuronal and hormonal pathways. Here we studied the interaction between the orexigenic gastric peptide, ghrelin, and the anorectic intestinal peptide, glucagon-like peptide 1 (GLP-1), in terms of feeding regulation via the vagal afferents. GLP-1 preadministration 30 min before ghrelin administration to rats and mice abolished ghrelin-induced food intake, while ghrelin preadministration abolished the anorectic effect of GLP-1. Ghrelin preadministration suppressed GLP-1-induced Fos expression in the nodose ganglia (NG). Electrophysiological assessment confirmed that the initially administered peptide abolished the vagal afferent electrical alteration induced by the subsequently administered peptide. Both the growth hormone secretagogue receptor (GHSR) and the GLP-1 receptor (GLP-1R) are co-localised in a major proportion of NG neurons that innervate the stomach. In these Ghsr+Glp1r+ neurons, ghrelin preadministration abolished the GLP-1-induced calcium response. Ghrelin generated a hyperpolarising current and GLP-1 generated a depolarising current in isolated NG neurons in a patch-clamp experiment. Ghrelin and GLP-1 potently influenced each other in terms of vagally mediated feeding regulation. This peptidergic interaction allows for fine control of the electrophysiological properties of NG neurons.


Asunto(s)
Vías Aferentes/fisiología , Regulación del Apetito , Ghrelina/fisiología , Péptido 1 Similar al Glucagón/fisiología , Ganglio Nudoso/fisiología , Animales , Calcio/metabolismo , Receptor del Péptido 1 Similar al Glucagón/fisiología , Masculino , Ratones Endogámicos C57BL , Ratas Wistar , Receptores de Ghrelina/metabolismo
12.
Auton Neurosci ; 229: 102735, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33032244

RESUMEN

Oxytocin (OT) from the hypothalamus is increased in several cardiorespiratory nuclei and systemically in response to a variety of stimuli and stressors, including hypoxia. Within the nucleus tractus solitarii (nTS), the first integration site for cardiorespiratory reflexes, OT enhances synaptic transmission, action potential (AP) discharge, and cardiac baroreflex gain. The hypoxic stressor obstructive sleep apnea, and its CIH animal model, elevates blood pressure and alters heart rate variability. The nTS receives sensory input from baroafferent neurons that originate in the nodose ganglia. Nodose neurons express the OT receptor (OTR) whose activation elevates intracellular calcium. However, the influence of OT on other ion channels, especially potassium channels important for neuronal activity during CIH, is less known. This study sought to determine the mechanism (s) by which OT modulates sensory afferent-nTS mediated reflexes normally and after CIH. Nodose ganglia neurons from male Sprague-Dawley rats were examined after 10d CIH (6% O2 every 3 min) or their normoxic (21% O2) control. OTR mRNA and protein were identified in Norm and CIH ganglia and was similar between groups. To examine OTR function, APs and potassium currents (IK) were recorded in dissociated neurons. Compared to Norm, after CIH OT depolarized neurons and reduced current-induced AP discharge. After CIH OT also produced a greater reduction in IK that where tetraethylammonium-sensitive. These data demonstrate after CIH OT alters ionic currents in nodose ganglia cells to likely influence cardiorespiratory reflexes and overall function.


Asunto(s)
Barorreflejo/fisiología , Fenómenos Electrofisiológicos/fisiología , Hipoxia/fisiopatología , Ganglio Nudoso/fisiología , Oxitocina/metabolismo , Canales de Potasio/metabolismo , Receptores de Oxitocina/metabolismo , Transducción de Señal/fisiología , Síndromes de la Apnea del Sueño/fisiopatología , Aferentes Viscerales/fisiología , Animales , Modelos Animales de Enfermedad , Hipoxia/metabolismo , Masculino , Ganglio Nudoso/metabolismo , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley , Síndromes de la Apnea del Sueño/metabolismo
13.
J Neurosci ; 40(38): 7216-7228, 2020 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-32817244

RESUMEN

Viscera receive innervation from sensory ganglia located adjacent to multiple levels of the brainstem and spinal cord. Here we examined whether molecular profiling could be used to identify functional clusters of colon afferents from thoracolumbar (TL), lumbosacral (LS), and nodose ganglia (NG) in male and female mice. Profiling of TL and LS bladder afferents was also performed. Visceral afferents were back-labeled using retrograde tracers injected into proximal and distal regions of colon or bladder, followed by single-cell qRT-PCR and analysis via an automated hierarchical clustering method. Genes were chosen for assay (32 for bladder; 48 for colon) based on their established role in stimulus detection, regulation of sensitivity/function, or neuroimmune interaction. A total of 132 colon afferents (from NG, TL, and LS ganglia) and 128 bladder afferents (from TL and LS ganglia) were analyzed. Retrograde labeling from the colon showed that NG and TL afferents innervate proximal and distal regions of the colon, whereas 98% of LS afferents only project to distal regions. There were clusters of colon and bladder afferents, defined by mRNA profiling, that localized to either TL or LS ganglia. Mixed TL/LS clustering also was found. In addition, transcriptionally, NG colon afferents were almost completely segregated from colon TL and LS neurons. Furthermore, colon and bladder afferents expressed genes at similar levels, although different gene combinations defined the clusters. These results indicate that genes implicated in both homeostatic regulation and conscious sensations are found at all anatomic levels, suggesting that afferents from different portions of the neuraxis have overlapping functions.SIGNIFICANCE STATEMENT Visceral organs are innervated by sensory neurons whose cell bodies are located in multiple ganglia associated with the brainstem and spinal cord. For the colon, this overlapping innervation is proposed to facilitate visceral sensation and homeostasis, where sensation and pain are mediated by spinal afferents and fear and anxiety (the affective aspects of visceral pain) are the domain of nodose afferents. The transcriptomic analysis performed here reveals that genes implicated in both homeostatic regulation and pain are found in afferents across all ganglia types, suggesting that conscious sensation and homeostatic regulation are the result of convergence, and not segregation, of sensory input.


Asunto(s)
Sistema Nervioso Autónomo/citología , Neuronas Aferentes/metabolismo , Transcriptoma , Animales , Sistema Nervioso Autónomo/metabolismo , Sistema Nervioso Autónomo/fisiología , Células Cultivadas , Colon/inervación , Femenino , Ganglios Espinales/citología , Ganglios Espinales/metabolismo , Ganglios Espinales/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Conducción Nerviosa , Técnicas de Trazados de Vías Neuroanatómicas , Neuronas Aferentes/citología , Neuronas Aferentes/fisiología , Ganglio Nudoso/citología , Ganglio Nudoso/metabolismo , Ganglio Nudoso/fisiología , RNA-Seq , Vejiga Urinaria/inervación , Vísceras/inervación
14.
Am J Physiol Cell Physiol ; 318(4): C787-C796, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32073876

RESUMEN

Cholecystokinin (CCK) is a gut-derived peptide that potently promotes satiety and facilitates gastric function in part by activating G protein-coupled CCK1 receptors on primary vagal afferent neurons. CCK signaling is dynamic and rapidly desensitizes, due to decreases in either receptor function and the resulting signal cascade, ion channel effectors, or both. Here we report a decay-time analytical approach using fluorescent calcium imaging that relates peak and steady-state calcium responses in dissociated vagal afferent neurons, enabling discrimination between receptor and ion channel effector functions. We found desensitization of CCK-induced activation was predictable, consistent across cells, and strongly concentration dependent. The decay-time constant (tau) was inversely proportional to CCK concentration, apparently reflecting the extent of receptor activation. To test this possibility, we directly manipulated the ion channel effector(s) with either decreased bath calcium or the broad-spectrum pore blocker ruthenium red. Conductance inhibition diminished the magnitude of the CCK responses without altering decay kinetics, confirming changes in tau reflect changes in receptor function selectively. Next, we investigated the contributions of the PKC and PKA signaling cascades on the magnitude and decay-time constants of CCK calcium responses. While inhibition of either PKC or PKA increased CCK calcium response magnitude, only general PKC inhibition significantly decreased the decay-time constant. These findings suggest that PKC alters CCK receptor signaling dynamics, while PKA alters the ion channel effector of the CCK response. This analytical approach should prove useful in understanding receptor/effector changes underlying acute desensitization of G-protein coupled signaling and provide insight into CCK receptor dynamics.


Asunto(s)
Colecistoquinina/farmacología , Neuronas Aferentes/efectos de los fármacos , Ganglio Nudoso/efectos de los fármacos , Nervio Vago/efectos de los fármacos , Animales , Calcio/metabolismo , Neuronas/efectos de los fármacos , Neuronas Aferentes/citología , Neuronas Aferentes/fisiología , Ganglio Nudoso/citología , Ganglio Nudoso/fisiología , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos
15.
Neuroscience ; 423: 98-108, 2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-31689490

RESUMEN

Non-synaptic transmission is pervasive throughout the nervous system. It appears especially prevalent in peripheral ganglia, where non-synaptic interactions between neighboring cell bodies have been described in both physiological and pathological conditions, a phenomenon referred to as cross-depolarization (CD) and thought to play a role in sensory processing and chronic pain. CD has been proposed to be mediated by a chemical agent, but its identity has remained elusive. Here, we report that in the rat dorsal root ganglion (DRG), the P2Y1 purinergic receptor (P2RY1) plays an important role in regulating CD. The effect of P2RY1 is cell-type specific: pharmacological blockade of P2RY1 inhibited CD in A-type neurons while enhancing it in C-type neurons. In the nodose ganglion of the vagus, CD requires extracellular calcium in a large percentage of cells. In contrast, we show that in the DRG extracellular calcium appears to play no major role, pointing to a mechanistic difference between the two peripheral ganglia. Furthermore, we show that DRG glial cells also play a cell-type specific role in CD regulation. Fluorocitrate-induced glial inactivation had no effect on A-cells but enhanced CD in C-cells. These findings shed light on the mechanism of CD in the DRG and pave the way for further analysis of non-synaptic neuronal communication in sensory ganglia.


Asunto(s)
Comunicación Celular/fisiología , Ganglios Espinales/fisiología , Neuronas/fisiología , Receptores Purinérgicos P2Y1/fisiología , 2-Amino-5-fosfonovalerato/farmacología , 6-Ciano 7-nitroquinoxalina 2,3-diona/farmacología , Potenciales de Acción/fisiología , Adenosina Difosfato/análogos & derivados , Adenosina Difosfato/farmacología , Animales , Bencenosulfonatos/farmacología , Calcio/fisiología , Citratos/farmacología , Estimulación Eléctrica , Masculino , Inhibición Neural/fisiología , Neuroglía/efectos de los fármacos , Neuroglía/fisiología , Neuronas/efectos de los fármacos , Ganglio Nudoso/fisiología , Piperazinas/farmacología , Ratas , Receptores Purinérgicos P2Y1/efectos de los fármacos
16.
J Physiol ; 597(6): 1503-1515, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30605228

RESUMEN

KEY POINTS: Tenascin X (TNX) functions in the extracellular matrix of skin and joints where it maintains correct intercellular connections and tissue architecture TNX is associated exclusively with vagal-afferent endings and some myenteric neurones in mouse and human stomach, respectively. TNX-deficient mice have accelerated gastric emptying and hypersensitivity of gastric vagal mechanoreceptors that can be normalized by an inhibitor of vagal-afferent sensitivity. Cultured nodose ganglion neurones showed no changes in response to capsaicin, cholecystokinin and potassium chloride in TNX-deficient mice. TNX-deficient patients have upper gastric dysfunction consistent with those in a mouse model. Our translational studies suggest that abnormal gastric sensory function may explain the upper gut symptoms present in TNX deficient patients, thus making it important to study gastric physiology. TNX deficiency should be evaluated routinely in patients with connective tissue abnormalities, which will enable a better understanding of its role and allow targeted treatment. For example, inhibitors of vagal afferents-baclofen could be beneficial in patients. These hypotheses need confirmation via targeted clinical trials. ABSTRACT: Tenascin-X (TNX) is a glycoprotein that regulates tissue structure via anti-adhesive interactions with collagen in the extracellular matrix. TNX deficiency causes a phenotype similar to hypermobility Ehlers-Danlos syndrome involving joint hypermobility, skin hyperelasticity, pain and gastrointestinal dysfunction. Previously, we have shown that TNX is required for neural control of the bowel by a specific subtype of mainly cholinergic enteric neurones and regulates sprouting and sensitivity of nociceptive sensory endings in mouse colon. These findings correlate with symptoms shown by TNX-deficient patients and mice. We aimed to identify whether TNX is similarly present in neural structures found in mouse and human gastric tissue. We then determined whether TNX has a functional role, specifically in gastric motor and sensory function and nodose ganglia neurones. We report that TNX was present in calretinin-immunoreactive extrinsic nerve endings in mouse and human stomach. TNX deficient mice had accelerated gastric emptying and markedly increased vagal afferent responses to gastric distension that could be rescued with GABAB receptor agonist. There were no changes in nodose ganglia excitability in TNX deficient mice, suggesting that vagal afferent responses are probably the result of altered peripheral mechanosensitivity. In TNXB-deficient patients, significantly greater symptoms of reflux, indigestion and abdominal pain were reported. In the present study, we report the first role for TNX in gastric function. Further studies are required in TNX deficient patients to determine whether symptoms can be relieved using GABAB agonists.


Asunto(s)
Síndrome de Ehlers-Danlos/genética , Vaciamiento Gástrico , Estómago/fisiología , Tenascina/genética , Animales , Células Cultivadas , Síndrome de Ehlers-Danlos/fisiopatología , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Mutación , Neuronas Aferentes/metabolismo , Neuronas Aferentes/fisiología , Ganglio Nudoso/citología , Ganglio Nudoso/metabolismo , Ganglio Nudoso/fisiología , Estómago/fisiopatología , Tenascina/metabolismo , Nervio Vago/metabolismo , Nervio Vago/fisiología
17.
J Physiol ; 597(6): 1487-1502, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30565225

RESUMEN

KEY POINTS: Obesity is associated with disrupted satiety regulation. Mice with diet-induced obesity have reduced vagal afferent neuronal excitability and a decreased afferent response to satiety signals. A low grade inflammation occurs in obesity with increased expression of inducible nitric oxide synthase (iNOS). Inhibition of iNOS in diet-induced obese mice restored vagal afferent neuronal excitability, increased the afferent response to satiety mediators and distention of the gut, and reduced short-term energy intake. A prolonged inhibition of iNOS reduced energy intake and body weight gain during the first week, and reduced amounts of epididymal fat after 3 weeks. We identified a novel pathway underlying disrupted satiety regulation in obesity. Blocking of this pathway might be clinically useful for the management of obesity. ABSTRACT: Vagal afferents regulate feeding by transmitting satiety signals to the brain. Mice with diet-induced obesity have reduced vagal afferent sensitivity to satiety signals. We investigated whether inducible nitric oxide synthase (iNOS)-derived NO contributed to this reduction. C57BL/6J mice were fed a high- or low-fat diet for 6-8 weeks. Nodose ganglia and jejunum were analysed by immunoblotting for iNOS expression; NO production was measured using a fluorometric assay. Nodose neuron excitability and intestinal afferent sensitivity were evaluated by whole-cell patch clamp and in vitro afferent recording, respectively. Expression of iNOS and production of NO were increased in nodose ganglia and the small intestine in obese mice. Inhibition of iNOS in obese mice by pre-treatment with an iNOS inhibitor increased nodose neuron excitability via 2-pore-domain K+ channel leak currents, restored afferent sensitivity to satiety signals and reduced short-term energy intake. Obese mice given the iNOS inhibitor daily for 3 weeks had reduced energy intake and decreased body weight gain during the first week, compared to mice given saline, and lower amounts of epididymal fat at the end of 3 weeks. Inhibition of iNOS or blocking the action of iNOS-derived NO on vagal afferent pathways might comprise therapeutic strategies for hyperphagia and obesity.


Asunto(s)
Óxido Nítrico Sintasa de Tipo II/metabolismo , Óxido Nítrico/metabolismo , Obesidad/metabolismo , Respuesta de Saciedad , Nervio Vago/fisiología , Potenciales de Acción , Animales , Yeyuno/inervación , Yeyuno/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas Aferentes/metabolismo , Neuronas Aferentes/fisiología , Ganglio Nudoso/citología , Ganglio Nudoso/metabolismo , Ganglio Nudoso/fisiología , Obesidad/fisiopatología , Canales de Potasio/metabolismo , Transducción de Señal , Nervio Vago/metabolismo
18.
Science ; 362(6413): 464-467, 2018 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-30361375

RESUMEN

Activation of stretch-sensitive baroreceptor neurons exerts acute control over heart rate and blood pressure. Although this homeostatic baroreflex has been described for more than 80 years, the molecular identity of baroreceptor mechanosensitivity remains unknown. We discovered that mechanically activated ion channels PIEZO1 and PIEZO2 are together required for baroreception. Genetic ablation of both Piezo1 and Piezo2 in the nodose and petrosal sensory ganglia of mice abolished drug-induced baroreflex and aortic depressor nerve activity. Awake, behaving animals that lack Piezos had labile hypertension and increased blood pressure variability, consistent with phenotypes in baroreceptor-denervated animals and humans with baroreflex failure. Optogenetic activation of Piezo2-positive sensory afferents was sufficient to initiate baroreflex in mice. These findings suggest that PIEZO1 and PIEZO2 are the long-sought baroreceptor mechanosensors critical for acute blood pressure control.


Asunto(s)
Barorreflejo/fisiología , Presión Sanguínea/fisiología , Canales Iónicos/fisiología , Mecanotransducción Celular/fisiología , Neuronas/fisiología , Presorreceptores/fisiología , Animales , Barorreflejo/genética , Canales Iónicos/genética , Mecanotransducción Celular/genética , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Ganglio Nudoso/fisiología , Optogenética
19.
Physiol Behav ; 189: 26-31, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29476874

RESUMEN

Compared to younger individuals, older human subjects have significantly lower food intakes and an increased satiety response. N-methyl-d-aspartate (NMDA) receptors expressed by vagal afferent neurons originating from nodose ganglia (NG) are involved in modulating the satiety response. The present study investigated how NMDA receptor subunit phenotypes in NG neurons change with age and how these age-related alterations in food intake are modulated by presynaptic NMDA receptors in the NG of male Sprague Dawley rats (six week-old and sixty week-old). Food intake was measured at 30-, 60-, and 120-min following intraperitoneal administration of cholecystokinin (CCK) or the non-competitive NMDA receptor antagonist MK-801. Immunofluorescence was used to determine NMDA receptor subunit expression (NR1, NR2B, NR2C, and NR2D) in the NG. The results showed that, CCK reduced food intake at 30-, 60-, and 120-min post injection in both young and the middle-age animals, with no statistical difference between the groups at 30- and 60-min. In contrast, MK-801 produced an increase in food intake that was significantly higher in middle-age rats compared to young animals at all time points studied. NR1 subunit was expressed by almost all NG neurons in both age groups. In young rats, NR2B, NR2C, and NR2D subunits were expressed in 56.1%, 49.3%, and 13.9% of NG neurons, respectively. In contrast, only 30.3% of the neuronal population in middle-aged rats expressed NR2B subunit immunoreactivity, NR2C was present in 34.1%, and only 10.6% of total neurons expressed the NR2D subunit. In conclusion, glutamate-dependent regulation of food intake is altered with age and one of the potential mechanisms through which this age-related changes in intake occur is changes in NMDA receptor phenotypes on vagal afferent neurons located in NG.


Asunto(s)
Envejecimiento/fisiología , Ingestión de Alimentos/fisiología , Neuronas Aferentes/fisiología , Ganglio Nudoso/fisiología , Receptores de N-Metil-D-Aspartato/fisiología , Respuesta de Saciedad/fisiología , Animales , Colecistoquinina/farmacología , Maleato de Dizocilpina/farmacología , Ingestión de Alimentos/efectos de los fármacos , Masculino , Neuronas Aferentes/efectos de los fármacos , Ganglio Nudoso/efectos de los fármacos , Fenotipo , Subunidades de Proteína/biosíntesis , Subunidades de Proteína/efectos de los fármacos , Ratas , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/biosíntesis
20.
Brain Res ; 1636: 21-42, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26835561

RESUMEN

The effects of 17ß-estradiol (E) on the distribution and density of brainstem projections of small or large diameter primary vagal afferents were investigated in Wistar rats using transganglionic transport of wheat germ agglutinin- (WGA; preferentially transported by non-myelinated afferent C-fibers; 2%), or cholera toxin B-subunit- (CTB, 5%; preferentially transported by large myelinated afferent A-fibers) conjugated horseradish peroxidase (HRP) in combination with the tetramethylbenzidine method in age matched ovariectomized (OVX) only or OVX and treated with E (OVX+E; 30 pg/ml plasma) females for 12 weeks. Additionally, these projections were compared to aged matched males. Unilateral microinjection of WGA-HRP into the nodose ganglion resulted in dense anterograde labeling bilaterally, with an ipsilateral predominance in several subnuclei of the nucleus of the solitary tract (NTS) and in area postrema that was greatest in OVX+E animals compared to OVX only and males. Moderately dense anterograde labeling was also observed in paratrigeminal nucleus (PAT) of the OVX+E animals. CTB-HRP produced less dense anterograde labeling in the NTS complex, but had a wider distribution within the brainstem including the area postrema, dorsal motor nucleus of the vagus, PAT, the nucleus ambiguus complex and ventrolateral medulla in all groups. The distribution of CTB-HRP anterograde labeling was densest in OVX+E, less dense in OVX only females and least dense in male rats. Little, if any, labeling was found within PAT in males using either WGA-or CTB-HRP. Taken together, these data suggest that small, non-myelinated (WGA-labeled) and large myelinated (CTB-labeled) diameter vagal afferents projecting to brainstem autonomic areas are differentially affected by circulating levels of estrogen. These effects of estrogen on connectivity may contribute to the sex differences observed in central autonomic mechanisms between gender, and in females with and without estrogen.


Asunto(s)
Tronco Encefálico/anatomía & histología , Estradiol/farmacología , Estrógenos/farmacología , Neuronas Aferentes/efectos de los fármacos , Caracteres Sexuales , Nervio Vago/fisiología , Animales , Tronco Encefálico/metabolismo , Toxina del Cólera/metabolismo , Femenino , Lateralidad Funcional , Peroxidasa de Rábano Silvestre/metabolismo , Masculino , Neuronas Aferentes/fisiología , Ganglio Nudoso/fisiología , Ovariectomía , Ratas , Aglutinina del Germen de Trigo-Peroxidasa de Rábano Silvestre Conjugada/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...